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Abstract. The group properties of thél + 1)-dimensional matrix diffusion equation of the
form dy/0t = 9{A(y)dy/dx}/dx with respect to point symmetries are given. It is shown that

in particular cases the group properties of this equation are similar to those of the corresponding
scalar equation. Namely, the Lie algebra is extended for power and exponential functions, with
additional extensions when powers ef% and —2 exist. However, a specific form of is
shown to exist for cases admitting both infinite and finite groups. The result obtained is used
to construct new group-invariant solutions for impulsive boundary inputs. Using two similarity
variables, a reduction is applied to the coupled diffusion of temperature and volumetric moisture
content in porous media under periodic boundary conditions. A perturbation method is employed
to obtain an explicit solution for the case whancan be expressed exponentially in terms of
the similarity variables.

1. Introduction

Whilst systems of pure diffusion equations, in both their linear and nonlinear forms are well
known and have many physical and biological applications, the research described here
focusses on less familiar cases where diffusion coefficients or other ‘shape’ functions are
defined either in general or poor analytic terms. Of particular interest here is the case of the
extension of Richard’s equation, which describes the movement of water in a homogeneous
unsaturated soil, to cases describing the combined transport of water vapour and heat under
a combination of gradients of soil temperature and volumetric water content. The theory
was first formulated by Philip and De Vries [13] and DeVries [3], with some practical data
provided by Jackson [6]. Such coupled transport is of considerable significance in semi-arid
environments where moisture transport often occurs essentially in the water vapour phase.
Under these conditions the transport equations, valid in a vertical column of soil, may be
written in the form [7]
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whereT (x, t) andf(x, t) are respectively the soil temperature and volumetric water content
at depthx and timer. It is important to realize that extensions which include the coupled
diffusion of solute follow in an obvious way.

Of particular interest to the mathematician is the fact that not only are the four diffusion
coefficients poorly defined nonlinear functions®fandé [15], but that there is a recurring
requirement on the part of soil scientists for analytic/semi analytic accounts of such transport
processes. Indeed Philip [12] stated that one task for the mathematical analyst is to extract
essential information from the equations and to characterize solution types of interest. In
terms of coupled flow the task may be said to consist firstly, of determining realistic
forms for the diffusion equations which give rise to at least partially analytic solutions
and, secondly, of providing analytical descriptions of experiments. Although a perturbation
analysis of the system (1) was considered by Shepherd and Wiltshire [16] for harmonic soil
surface boundary conditions, no explicit analytical forms for the diffusion coefficients were
found. Such an analysis is ideally suited to the application of symmetry techniques which
can potentially define diffusion functions in such a way as to produce relatively simple
solutions which at the same time can be of significant physical interest. This was the
case in a one-dimensional point symmetry group analysis of Richard’s equation produced
by Sposito [19], which was extended to include three-dimensional cases by Edwards and
Broadbridge [4] and potential symmetries by Sophocleous [18]. It is interesting to note that
these authors found that Lie symmetries did exist for cases in which moisture diffusivities
and hydraulic conductivities were either power-law or exponential functions of volumetric
moisture content/matric potential. Indedd@) = a(b — 6)~2 is a functional form of
particular significance as shown by Knight and Philip [8] and Broadbridge and White
[2]. In the case of coupled diffusion some promising symmetry results were obtained
by Wiltshire [21], though the analysis was primarily linear in nature.

It is the aim here to produce an extended symmetry analysis for the cases of linear and
nonlinear coupled diffusion and to show how the power-law and exponential diffusivities
for the scalar cases can be generalized. Furthermore, particular analytical solutions for
coupled diffusion will be given that correspond to impulsive boundary conditions. Finally,
the analysis will be discussed in connection with the problem of determining solutions
for the nonlinear coupled diffusion of temperature and volumetric moisture content under
periodic boundary conditions. Two similarity variables and a perturbation method will be
used to generate a solution valid when the matrix of diffusion coefficients is exponentially
dependent on the similarity variables.

Our attention will be focused on the one-dimensional nonlinear equation written in the
form

., a0y 0 oy
’tv 3 3 ) / - — A - :0 2
p(x.t,y. 9.y, y") 5 Bx{ (y)ax} 2

wherey = y(x,t) with y = {y;}, i = 1,...,n and whereA(y) is the square matrix

of diffusion coefficients, with det # 0. In many physical situations this matrix is non-
singular and sometimes diagonally dominant. The group classification of the scalar case
y = {y1}, constantA, or heat equation is well known [11] and it will be shown that some

of the results presented here are similar to the scalar case.

Finally although the focus here will be on applications of coupled diffusion in
soil science, such systems are also important in mathematical biology where examples
concerning chemotaxis, in which organisms respond positively to a chemical attractant, are
also extremely important [9, 17].
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The analysis begins in section 2 with the derivation of the determining equations for the
classical symmetry groups associated with the system (2) and then continues in section 3
with the presentation of a detailed analysis of the particular groups corresponding to various
function forms forA(y). In secti;m 4 a similar analysis is presented for the case when
is constant and further a summary of the principal Lie symmetries is given in tabular form.
In section 5 this analysis is then used to obtain a symmetry reduction of coupled diffusion
corresponding to impulsive boundary conditions, and in sedfica symmetry reduction
linked with perturbation analysis is presented so as to discuss the coupled flow of moisture
and heat in a soil.

2. Definition of the classical symmetry groups
A complete account of the method explained in this section may be found in, for example,

Olver [10], Bluman and Kumei [1] and Stephani [20].
The infinitesimal generatok’ is defined by

a a a
X=§(x,f7y)—+rl(x,t7y)_+7T(x7f,y)V V:{_} (3)
ax at ay;

and further the appropriate prolongation operator may be written as

d 0
Xg =§a ~|—77§ + 7V + 7w Vy + 7V + TV (4)
wherer,, w;, andw,, have familiar forms which are presented in the appendix and where
0 0 0
Vy=1-— Vy=1— Vyr = —1- (%)
’ ay; ay; ay;

The condition for invariance of equation (2) may be found by setﬁ’@@|(2) = 0, with the
result that

7 = Ao+ (V) Aly" + [ VIA]7, + [(me VALY + [(7m-V) (Y -V)A]Y (6)

which is also presented in an expanded form in the appendix. It may be shown that many
of the resulting equations are identically satisfied only if

§=E&(x.1) n=n(). (1)

The remaining non-trivial determining equations are

7= An" (8)
—Ey =2Ay-V)m' — &' Ay + [ -VA]r + (@ -V)A]Y )
(Ay" V) — Ay = A[(y"-V)7] — 26’ Ay" + [(w-V)A]y" (10)
(AY'-V)(y'-V)7 = 0. (11)

By inspection of the determining equations (8)—(11) prancipal Lie algebrais the
three-dimensional space of infinitesimal symmetries of equation (2) spanned by the operators

d d d ad
28— X X3=x—+2t—. (12)
X

Xy =_
ot ax | ot
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3. Solution of the determining equations: A # constant

3.1. A is an arbitrary matrix and depends on, yo, ..., yk

If A depends only ot variables, so thatx = A(y1, y2,..., %), 0 <k < n, then the Lie
algebra can be extended to include

Xy = i=12...,(n—k). (13)

3.2. Basic simplification

For particular cases of, the system (8)—(11) can be satisfied without each of the coefficients
being zero. In these cases, extensions to the algebra (12) are possible. In this paper the
case

T =m(x, ) pu(y) (14)

will be considered where:(x, ¢) is a scalar function angh is a vector function ofy.
For the classification of cases when the algebra (12) may be extended, first note that
the determining equations may also be written as

ap = bAp (15)
—cy' = 2dA(Y V)p — eAy +d[( V)N ] + d[ (V) Ay (16)
(AY-V)p+ oAy = Al -V)p] + (V) Ay (17)
(AY V)Y -V)n=0 (18)

wherea, b, ¢, d, e ando are constant coefficients (det# 0). Indeed, sinceA depends
only ony then (8) to (11) can hold only when all of the coefficients vanish identically or
are proportional, with constant coefficients, to the functier(s, r) # 0, A1(x, t) # 0 and
A2(x, 1) # 0. Namely

m(x,t) = aii(x,t) m"(x,t) = bri(x, 1) (19)
£ = cho(x, 1) m'(x, 1) = dra(x, 1) £" = ery(x, 1) (20)
(28" =) = om(x,1). (21)

It is easy to see from (20) and (21) that
2¢e =od. (22)
Note that the system (15)—(18) is not compatible whengvds an arbitrary vector

function. Thusp may be found by writing

]
n@) = po(y) + Y Gm(y)  1en (23)
i=1

wherecy, ¢o, ..., ¢; are arbitrary constants andd does not depend of). Here,uy and
(i =1,...,1) are linear independent solutions of the system (15)—(18) for a given naatrix
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On substitution of (23) fop(y) in the system (15)—(18) and by identifying coefficients
of ¢;, then the following system may be obtained:

apg = bApg (24)
—cy' = 2dAWY Vo — 30dAy +d[(y - V)A]po + d[ (o V)A Y (25)
(AY Vg + oAy = Ay -VIpg] + (1o V) AY' (26)
(AY V)Y -V)po =0 (27)
ap; = bAp, (28)
d[2A(y V) + [ DA ] + [ V)A]y'] = 0 (29)
AY Vg = A V| + (- VIAY (30)
(AY-V)(y'-V)p; = 0. (31)

Since detA # 0, it follows from (24) and (28) that the coefficientsandb can only be
zero in simultaneous cases. Hence, further analysis of (24)—(31) will be continued in two
separate classes.

3.3. Theclasa #0, b #0

In this class equations (24) and (28) can be considered as an eigenvalue problem, where
Aax = a/b is the eigenvalue ang is the eigenvector ofA. If A is such that there are
several eigenvectors corresponding to the same eigenxalughen in (23)l <n —1. In

this case it may be shown that

c=0 e=0 cm” = 0. (32)

3.3.1. Subclass # 0. The matrix A and vectorsug andy; (( = 1,...,1) are defined
from the system (24)—(31) with

c=0 c=d. (33)
When the system (24)—(31) is compatible, then

X—t28+ta+x2+xr v X—t8+ v
aT Ty T\ g Tt Bo 5= 1oy Tk

34
Xoyi = p;°V Noyi+i = xp;-V (34)
KXororri = (337 + dat)xp;V i=1...,1

Remark. The system (24)—(31) is incompatible whpg = Ny + k, whereN is an x n
constant matrix an& is a constant vector.

3.3.2. Subclass = 0. The matrix A and vectorsug, p; (i = 1,...,1) are defined by
(24)—(31) witho = 0, ¢ = 0. When the system (24)—(31) is compatible, then

Xari =m(x, 0)p; vV i=0,...,1 (35)
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wherem satisfiesn = A,m”. So, whenug andy; (i =1, ...,[) are constant vectors, then
u;, =h (i =0,...,1) whereh is a constant vector and may be found as a solution of
the system (24)—(31). Hence

1\=‘111(y)=‘1/1(&—E B &_y_n> hahi =) bW (36)
J

wherei, j = 1,...,n. The additional symmetry operator is

Xoo = m(x, t)h-V. (37)

3.4. Theclasa =0, =0

3.4.1. Subclass 4 # 0. The matrixA and vectorgug andu,; (i =1,...,1) are defined
from (25)—(27), (29)—(31). In the cases when the system is compatible, the additional
symmetry operators are

X, ta + o'V X (U 2+Ct) 9 + \Y
= —0ot— . =|—-x —t) — + xpge
4 Py Mo 5 1 2') ox Ho (38)

XS-H' = I,Li'v X5+H_i ZXIJ/I*‘V i = 1, . ,l.

To find the explicit form forA (y) the particular case, whemy = Ny + k will now be
considered, wher#y/ is ann x n constant matrix ané is a constant vector.

Case (a). The systeMy+k = 0 has the solutiony = ¢. Since detV # 0 then eigenvalues
A # 0 and regular transformations exist, such that

y=Bv+c V,=B'V N=x+M B*MB=0 A =BABL.

(39)
Subcase (i). It may be shown that in this case
c=0 o= —%A (40)
and the matrixA has the form
A = v; P, (v)
—3V — LW, — .. = LV, Wi, - W,
=W — LWy, — = LV, Wy, ... Wy (41)
Yr(v) =
_%q/n - IZ‘IIn,Iz — In\yn,l,, “pn,lg te \pn,l,,
where
v ;
W= ) W=t L= j=2...n I=1...n (42
o BI] U1
The generatorgy, and Xs from (38) are
4 9 1,0
Xy = =t— +v-V, Xg = ——x2— + xv-V,. (43)

3 ot 3 ox
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Subcase (ii). In this case
c=0 o =-2\ Av=0 (44)

and the matrix has the form

— _ v Un
A = v 2Ws(v) Wy(v) = %(v—j, o v_1>' (45)

The generatorgy, and X5 from (38) are

el 1,0
X4 = ZIE + ’U'VU Xs = —Exza + X'U'Vv. (46)

Case (b). The systeniy + k = 0 is incompatible. Consider
y=Az ATINA=0 V.=A"V A=A"1AA h=A"1k.
In this case

Az =w(2_ 22 B (47)
h]_ hz /’l1 h3 hl hn

whereh = {h;}, h1 # O satisfyingAh = I, wherel is a constant vector. The generators
X, and Xs from (38) are

X4 = h-VZ X5 = xh-VZ. (48)

3.4.2. Subclass 2d = 0. It is clear from equation (32) that = 0. The matrixA and
vectorspg andy; (i =1,...,1) are defined by equations (25)—(27), (29)—(31) witk= 0

andc¢ = 0. In the cases when this system is compatible, the additional symmetry operators
have the following forms:

a
X4=—O'ta+l,l/o'v X4+i=/},i‘v l=1,,l (49)

Consider some particular cases of the compatibility of this system.

Case (a).ug = Ny + k. In this case, (27) is an identity and the solution of (26) may be
considered in two separate subcases similar to the £a856 .

Subcase (i). The systeMy+k = 0 has the solutioy = ¢.  Using (39) then (24)—(31),
(49) become

— v v v
A(w) = v] W3(v) W3(v) = W3 (—2, = —”)
V1 V1 U1

5 (50)
Xy = —GZ‘E + Av-V,

whereW (y) is ann x n matrix.
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Subcase (ii): The systemiy + k = 0 is incompatible. In this case

Az) = exp(,%a) Wy(2)

(51)
21 22 1 I3 21 Zn
W)=V - =, =—=,..., =—=
(Z) 4 (l’ll hz hl I’l3 hl hn)
and the particular form of; from (49) is
a
Xy = —ata + h-V,. (52)

Case (b). A is an upper-triangular matrix and = 2. It may be shown that the system
(24)—(31) is compatible, whep, is nonlinear. In particular

1
o = <}’105(y2) + ﬂ(yz)) A= 2+ v2)°¥(J)) (0 —tl) ©3

Viy2 + 72
where
1 o
T= J()da// + 8" (2 +y2)— +2e+y3=0 (54)
a//
8"+ B" (—? + 1+ a) +28'a’ + Ba” = 0. (55)
The functiony is arbitrary and/ is an invariant of the equation
0 d
1 2
—J +puy—J =0 56
Ko vt Ko 3y (56)

andy,, y»2, ys are arbitrary constants.

4. Solution of the determining equations whenA = A% is constant

In the particular case when = Al% is constant the determining equations (8) to (11)
may be solved explicitly as follows. It follows from (11) that%(y'-V)2x = 0 and since
detAl? £ 0, then

=M, t)y+ B(x,1) (57)
whereM is an x n matrix andg is a vector, such that equations (8)—(11) become
M = A0 p” B=Ag3" (58)
—&1 = AP + M/ A 4 A" (59)
28" — A + M AT — A0 py = 0. (60)

On differentiation of (59) with respect to and with the aid of (60) differentiated twice
with respect tax, it may be shown that

C A = 3ALIT - La7 AL, (61)

In addition, since detl® £ 0, from equation (60) we havél = —4M = M = h(t)1.
Hence

Mx,t)=h@)] + G(x) n = —4h(t) + ao (62)
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whereaqg is a constant. It follows on substitution of (62) in (61) that
g = =2n(t) + g(x). (63)

If the relationships (62) to (63) are now successively substituted in (58), (60) and then (58)
the exact form of(x, t) , n(¢r) and M(x, r) found. In this way it may be shown that in
addition to (12) the infinitesimal generators have the form

ad
Xy =2t— —xAlly.v (64)
ax
9 20 24 [0]
Xs=4tx— 4+ 4t°— — (x“A™ +2t)y-V (65)
ox at
d
XG = Ay-V X7 = —Cexa— Xoo = B-V (66)
X

wherecg and A are related through
AN — A0 A = 266 A0, (67)

If det A%l £ 0 then equation (67) has a solution if and only:4f= 0. A summary of the
results is presented in table 1.

Table 1. Principal examples of classical symmeti§.= A1 8", i = (a/b)m” and ¥; (y) are
defined in section 3.

Ay) & n ™

Ay) cx +c2 2c1t +c3 0

y={1...m}

A(y) c1x +c2 2c1t + ¢3 h=/{hy,..., hm)

y={y1...ym}

m<n

Al (c1 — c6)X + catx C4t2 + 2c1t + ¢3 — {%C4l‘ + %Aalmxz%Aalcsx
+cst +c2 +Aly+p

W1 (y) c1x +c2 2c1t + c3 mh

O1+k)™P0(y)  —Zesx?+axte 1+ dea)t+ea (esx +ca)y + k)

(y1 + k1) ~2W3(y) — %csxz +c1x +c2 (2c1 + 2c4)t 4¢3 (e5x + ca)(y + k)

(1 + k1) W3(y) c1x +c2 (2c1 — oca)t + c3 car(y + k)

e O1tk/r Wu(y) c1X +c2 (2c1 —ocy)t +c3 csh

5. Self-similar solution for impulsive boundary conditions

In this section consideration is given to symmetry reduction for the case of impulsive
boundary conditions. In particular, suppose that [y1, y»]" and

0y 9 | 4o (¥2\0y

o 2 22) >

” 8x{Y1 <y1> 8x} v, 220 t>1 (68)
y(x, to) = ad(x — x0)Yo (69)

whereé(x — xg) is the Dirac measure at.
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According to the invariance principle, it is necessary to find the subalgebra of the Lie
algebra spanned by

d d d d
X = — X = — XNy =2t— +x— 70
Sy 27 ox TR (70)
0
= —kt— + Y1+ Yo — (71)
ay1 ay2

which leaves thenitial manifold, the liner = 1y, invariant and which also conserves the
initial conditions at ¢+ = 7y given byx = xo and by equation (69). This subalgebra is the
two-dimensional algebra spanned by

d 0
=2(t — to) — — X0) — 72
BZ1 ( O)Bt + (x — xp) o (72)
0 0
Vo = —k(t—to)—+y1—+y2— (73)
ay1 dy2
Hence, in summary it is necessary to consider the generator
1 0 1 d d
- V=V = —10)— —Xo)— — 22, @4
Y= k+2(y1 V2) = ( 0) k+2(x xo)ax k+2<y18y1+y28y2> (74)

Using the method of characterlstlcs the similary ansatz is found to be

_ —1/(k+2) _ X —Xo
y(x, 1) = (t —to) p(w) W= (10 V&2 k+2#0 (75)
and so the diffusion equation reduces to

1 do
v 76
k2 wy = ‘P1|: da):|+(p0 (76)

wherego may be taken as zero whgnremains bounded for adb.

5.1. General solution

In this case equation (76) may be rewritten in the following form:

d(p]_ 1 ¥1 ¥2
P — Y Py — 77
dw Dk + 2)a) |: Zl(pl 1lg0/{ (77)
dy> 1 1 2
o S v, 2 78
dw Dk + Z)w |: 22¢l 12(/)’1C (78)
where
D = W1 Wy — WipWy. (79)

Using the ratio of these equations it is easy to establish the implicit solutiong fand ¢,
in the terms as follows:

d
o1 = w(W)p2 po=C exp(/ le))) (80)

1 2
s P = [ = Fw 1)

so that

e L e S
w=F <2(k+2)(a)0 w)) (82)
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where
®(w) = Woow —Wip
Wow — Wy
(83)
M(w) = M[xp w — Wy ]C exp —kfd—w w*
=3 21 11 o) .

In addition,C andwqg are constants which are determined from ithigal conditions

5.2. A particular example

In the case when
Ty (ﬂ) o, (84)
¥1

wherey(<p2/go1) is an arbitrary function, the equation (76) may be solved by supposing that
the matrix ¥, has two distinct eigenvalues with

Yom = Am Yon = An (85)
and by supposing that

() = a(w)m + p(w)n. (86)
In this way it may be shown that

1 _ B a(w)ymy + B(w)ny\ do
2= A (a(w)my + B(w)n) y (a(w)ml m ,B(w)n1> o (87)
1 _ P a(w)my + B(w)ny\ dB
k12 2605 = Az (@(w)my + B(w)n1)" y <a(w)m1 n ,B(w)n1> @ (88)

With the help of the ratio of these equations it is easy to establish the implicit solutions for
« and g in the terms as follows:

a(B) = apB/™ (89)
1 T i («@mz+ f(w)nz\ dB
S @) —Azf<a(w)m1+ﬂ(w>n1) y <a(a))m1+,3(a))n1> =N
(90)
1
B(w)=N"1 ( 2012 (w§ — w2)> . (91)

Therefore equations (75), (86), (89) and (91) give self-similar solution of (68), (69).
In particular, whenn;, n; > 0 and since8 > 0 we have
p=0 lw| > wo (92)

and g is determined from equation (91) ftw| < wo.
Moreover, without loss generality it may be supposed that A, and it is clear that
whenw ~ wq

_ k 2 2 M 2 2\1/k+p
g _|:2(k+2))»2n1{7(n2/n1)(w0 “’)] +O (s = D7)

k>0 p=0. (93)
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In the case whet = 0 andy = 1 then (89) and (90) can be integrated and combined
with (86) to give

(,()2 0)2
o(w) = apexp (—Kl> m + Bo €Xp (_4_)u2> n. (94)
The constant and can be found from the conservation relationship
/ y(x, fo) dx = / ¢(w) do = ayo. (95)

It should be noted that for practical situations the solutions presented in this section
may be applied in ideal situations when the solute and moisture distributions have finite
integrals, as is the case when spillages occur. In the description of the coupled diffusion of
heat and moisture, subject to diurnal or annual variation, such solutions are not valid, and
an analysis of the type to be presented in section 6 becomes more appropriate.

6. Application to coupled flow in porous media

6.1. ConstantAl”

Of particular physical interest is the case of the coupled diffusion of temperatuse ),

and volumetric water contenty,(x, ), in which the diffusion processes are subject to
periodic diurnal or annual boundary conditions. Indeed, in experiments conduacsid

by Jackson [6] for Adelanto loam at a site in Arizona, and by Rose [14] for a sandy loam in
the Northern Territory, Australia, the elements of the matrix of diffusion coefficiariigp)
varied about the constant matrix values/df! such that

o [223x10° 418x10°° o [216x103 856x10°
7= 8 5 AR = 8 5 (96)
531x10° 5.07x 10~ 6.21x 10° 5.11x 10~
calculated for the respective Jackson and Rose experiments using their CGS units.
Consider the case whek(y) = A% is a constant. It may be seen from equations (64),

(66) that equation (2) admits the following subalgebra spanned by:

9 9 9 9
— AV — i — o — Ay V — ar— 97
N1 1Y o +w8t Vo 2y a5 +w8t (97)
Ai = A9 BC, (AP) B=(ny,ny) i=12 (98)
ci=(r° o= (0 ° (99)
“\o o 2~ \o 1

whereny, n, are the eigenvectors af[? with distinct eigenvalues; and .
The transformation

y = Bv (100)
gives rise to
d 9 d d 9 d

L= T Max T Yar 2= 25 Pax Y (101)

3—”=<Al O>@. (102)

and
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The invariant solutions under the symmetries (101) have the form

vy = € “oi(w1 —arx) = € “p1(&1) (103)

vz = € " gp(wp — azx) = € py(62) (104)
and so substitution of (103), (104) in (102) means that

%w’l = oZ[g1 + 201 + ¢} %wé = a3lp2 + 205 + ¢4 (105)
with solutions

1 = Re(C1&%t + CLe77%2) @2 = Re(C3€™52 + (C,e7252) (106)

2
w w
=-1+ + 1- -1
Vl,2 2)»10{% \/< 2)»10[%)

2
w w
T10=—-1+ + 1- —
L2 2)»20[% \/< 2)\.2“%)

If o; = Jw/2);, i =1,2theny;, = 4i, 112, = £i and so
@1 = a1 co9&1) + by Sin(&y) @2 = ap C09&2) + by SiN(€2). (108)
With b; = 0 the solution is

(107)

y(x, 1) = aje” %" codwt — ajx)n;. (209)

This solution for coupled diffusion was obtained by Shepherd and Wiltshire [16], where
y(x,t) is the variation about the mean value and where the repeated index implies
summation from 1 to 2.

In addition, if A®) = A,[0] then

0.99 L,
n, = )\.1 =223x 10
244 x 10°°

(110)
—0.89 "
ny = Ao = 5.06 x 107°.

0.46

6.2. Quasi-constant(y)

The question arises as to how this solution may be modified for instances whisn

no longer constant and yet harmonic boundary conditions are still required. From the
point of view of similarity reduction, consideration is given to analytic formsAqly),
including constantAl®, for which travelling wave solutions exist, which also satisfy
specified harmonic boundary conditions. However, the simple use of the similarity variable
& = it + pox will not automatically give rise to solutions proportional to Gos

on the boundary. Indeed, even in cases wheres complex, solutions with harmonic
boundary conditions cannot be obtained unless two similarity varigblesiot + uox and

& = —iwt + upx are employed. The approach adopted here will be to write our travelling
wave solution in the formy(x, ) = f(x)®(&), &€ = ot —ax. In fact, it is easy to see on
multiplication of (2) by &’ that the following ordinary differential equation:

d® d d
wéE =ag [AaE(eE@)} (111)
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is obtained where now
y(x, 1) = e ®(§). (112)

As suggested by the above symmetry classification analysis it will be supposed that
A(y) has a form given by equation (68). In addition it will also be assumeditkad so
that the case of constant is included as a limiting case of this analysis. In addition, using
equation (84) it follows that

Aly) = A (i j) A(f©®). (113)
However, equation (111) must be modified to include the fact that the proposed solutions
y, modifications of (109), have two componemts i = 1, 2, and are also functions of the

two similarity variablest; andé,. In particular, equations (112), (113) will be generalized
so that

& =owt —a;x

y(x, 1) = € (&1, &) (114)
A<y2> A6, 8(®).
Y1

In this way equation (2) may be written as

8@- ad
W€ — = o — [Aa,—(e‘% ] (115)
g g 9&;
where again repeated indices imply summation from 1 to 2, and further
wj =w j=12 (116)

Of course, equation (115) could be analysed in detail using the method presented in
section 5. However, the approach here will be to adopt a perturbation method to account
for small variations inA(y) as described by Jackson [6] and Rose [14]. Thus it will be
assumed that

A(f (&), gE)) = A + e A (&1, &) + O(?)
®; (&1, &) = (&, £) + @M (&1, &) 4+ O(6?) (117)
®% &, £) = a; cosg;m,.

In this way, it may be shown that the equation arising from coefficients gives rise
exactly to the solution (109), whilst the equation for compor@_m arising frome? is

[ e 0}’ 9 | Ay, B0
Ay, q (€ B = & —a [ . (eff )} 118
‘ aa & 06 ok | o0& (18)
This equation may be simplified in cases of (113) where
el =giln, AP =Alo (&) (119)

to give the linear differential equation for componeﬁrj[l]t], j=12:

[l]

d .
s n; aka—sk[a(sl, £2)).;€% (COSE; — sing;) |n;

njkjaiak

4[]
8&35 (e§¢ )_we5 3
(120)
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This equation may be solved for specifi¢és, &). In particular, when

0 (&1, &) = ogexplpi&r + 28] (121)
then

o (Er ) = X; (&) explosts + pato] (122)
where
X&) = e {4, extlVBa] + B ext] - /B ] |

% {[s;(nj +2) — 2n2] singy — m;[s; + 2n; + 4]costy) (123)
J J

and

a1p1+ o202 o1 — Az
= ——22 >0 ,31=2/02<1 )—1

o o1

(124)

sj=1; + 8 — 1 ﬂz=2p1<a2 al)—l-
(07
In summary, a final solution to first order inwhen
A(f (&), g(E)) = AP (L+ oo explorér + pot2]) (125)
is

y(x, 1) = €% (a; cos§; + X (&) explorér + p252]) m; (126)

whereX; (&;)is given by (123). If now the constants, B; are chosen so tha#l] 0,00=0
in (123), then equation (126) will satisfy the harmonic boundary conditions.

In this solution the matrix of diffusion coefficients is a nonlinear function of the rations
of the components of in such a way that the surfaxés= constant give rise to a constant
value of A. Clearly, the perturbation approach may be extended to higher orderarid
also a more detailed analysis of potential analytic forms £ofis required to include a
broader range of possibilities than the exponential example of (121).

Finally, numerical calculations of (125) and (121) are straightforward. The eigenvalues
and eigenvectors ofAl%) may be calculated from (96) so that will be known for
annual or diurnal variation. In addition, the amplitudes of temperature and moisture
variation may be taken from the experiments of Jackson [6] or Rose [14], so for example
[a1 a2]" ~[10 01]7, and furtherop =~ 10-2 appears to be valid. It follows that the
spatial distributions and time evolutions gx, r) may be plotted for particular cases of
and p,.

Practical situations pose further interesting mathematical problems. The combination
on the boundary of diurnal variations in temperature and impulsive inputs for moisture is of
particular note. More generally, only Dirichlet boundary conditions have been considered
here, although in practical cases both Neumann and Robin situations are also particularly
important.

Appendix. Generation of the determining equations

The specification of the prolongation operator (4) can be completed using

=7+ @ V] - [+ @ VE]Y — [0 + @ -Vn]y (A1)
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m =[x+ @VIm] - [+ @VE]Y - [+ @-VInly (A2)
T =7+ @V + @ VIm] - [E+ @ -VE + @ VE]Y

—["+ WV + @ Vny + @ T+ (V)

—[W V& + @ -V)*%]y — [W V' + -V n]y

=2[£' + W-V)E]y" —2[n' + '-V)nly'. (A3)

Therefore the condition for invarianckg p|z = 0 becomes
m = Ay — [ VAl — [ -V)A]m, — [ VALY — [ V)@ - V)A]Y] , =0.
(A4)
In addition,¢ may be eliminated using (2) in the form
y=Ay"+ [ -VAY. (A5)

In order to find symmetry groups, the coefficients of (A4) must be equated to give the
following conditions:

Constant: 7 =An"

Yy — &y =20 V)7 —E"AY + [y VIA]T + [(@'-V)A]y
y//: (Ay//‘v)ﬂ' _ ];}Ay// — A[(y//‘v)ﬂ] _ An//Ay// _ Zs/Ay// _"_ [(W‘V)A]y//
Y.y (@AY -V)7m — 9[- V)A]Y

= — AW -VEY — Ay [ -VIAlY + Al -V)?n
— AW -VEY + W VAW - V)] - [ -V)A)EY

+ [({[@ 7] =&y} V) Ay + [(m-V) (@ - V)A]Y

vy —[(Ay"V)E]y = —AW" - V)éy — AW -VIn' Ay — AW -V)n'Ay”
—2A[('-V)ElY" — [ -V)A]n Ay" — [ Ay"-V)A ]y

Y.y — [(AY"-V)n]Ay" = —A[@"-V)n]Ay"

vy Yt = [([W-DAly-V)Ely = —A[@ V'] ([-VIA]Y) — Ay-V)%y’

—AY N[ DAY ~ [ VAW -VEY
- [({@W V&Y — [ + @ -VIn][W-V)A]y'}-V) Al Y
v.u.y - [y In][@ VDAY - [([-V)A]y' V) n] Ay”
= — A[@" V] (@ V)A]Y) — A[@'-V)*n]Ay”
— (@' AW VIn]ay" + [(@-VInAy"-V)A]y
v. v v,y —[((W-VA]lY-V)n] [ -V)A]Y

= — AW -V)*][(-V)A]Y
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@' VA][@ - Vn][@-V)A]Y

0=—-2A%"Yy

TR 0= -2A@-V)ny'
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