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‡ Division of Mathematics and Computing, University of Glamorgan, Pontypridd CF37 1DL,
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Abstract. The group properties of the(1+ 1)-dimensional matrix diffusion equation of the
form ∂y/∂t = ∂{3(y)∂y/∂x}/∂x with respect to point symmetries are given. It is shown that
in particular cases the group properties of this equation are similar to those of the corresponding
scalar equation. Namely, the Lie algebra is extended for power and exponential functions, with
additional extensions when powers of− 4

3 and−2 exist. However, a specific form of3 is
shown to exist for cases admitting both infinite and finite groups. The result obtained is used
to construct new group-invariant solutions for impulsive boundary inputs. Using two similarity
variables, a reduction is applied to the coupled diffusion of temperature and volumetric moisture
content in porous media under periodic boundary conditions. A perturbation method is employed
to obtain an explicit solution for the case when3 can be expressed exponentially in terms of
the similarity variables.

1. Introduction

Whilst systems of pure diffusion equations, in both their linear and nonlinear forms are well
known and have many physical and biological applications, the research described here
focusses on less familiar cases where diffusion coefficients or other ‘shape’ functions are
defined either in general or poor analytic terms. Of particular interest here is the case of the
extension of Richard’s equation, which describes the movement of water in a homogeneous
unsaturated soil, to cases describing the combined transport of water vapour and heat under
a combination of gradients of soil temperature and volumetric water content. The theory
was first formulated by Philip and De Vries [13] and DeVries [3], with some practical data
provided by Jackson [6]. Such coupled transport is of considerable significance in semi-arid
environments where moisture transport often occurs essentially in the water vapour phase.
Under these conditions the transport equations, valid in a vertical column of soil, may be
written in the form [7]

∂T

∂t
= ∂

∂x

[
κT (T , θ)

∂T

∂x
+ κθ (T , θ) ∂θ

∂x

]
∂θ

∂t
= ∂

∂x

[
DT (T , θ)

∂T

∂x
+Dθ (T , θ)

∂θ

∂x

] (1)
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whereT (x, t) andθ(x, t) are respectively the soil temperature and volumetric water content
at depthx and timet . It is important to realize that extensions which include the coupled
diffusion of solute follow in an obvious way.

Of particular interest to the mathematician is the fact that not only are the four diffusion
coefficients poorly defined nonlinear functions ofT andθ [15], but that there is a recurring
requirement on the part of soil scientists for analytic/semi analytic accounts of such transport
processes. Indeed Philip [12] stated that one task for the mathematical analyst is to extract
essential information from the equations and to characterize solution types of interest. In
terms of coupled flow the task may be said to consist firstly, of determining realistic
forms for the diffusion equations which give rise to at least partially analytic solutions
and, secondly, of providing analytical descriptions of experiments. Although a perturbation
analysis of the system (1) was considered by Shepherd and Wiltshire [16] for harmonic soil
surface boundary conditions, no explicit analytical forms for the diffusion coefficients were
found. Such an analysis is ideally suited to the application of symmetry techniques which
can potentially define diffusion functions in such a way as to produce relatively simple
solutions which at the same time can be of significant physical interest. This was the
case in a one-dimensional point symmetry group analysis of Richard’s equation produced
by Sposito [19], which was extended to include three-dimensional cases by Edwards and
Broadbridge [4] and potential symmetries by Sophocleous [18]. It is interesting to note that
these authors found that Lie symmetries did exist for cases in which moisture diffusivities
and hydraulic conductivities were either power-law or exponential functions of volumetric
moisture content/matric potential. IndeedD(θ) = a(b − θ)−2 is a functional form of
particular significance as shown by Knight and Philip [8] and Broadbridge and White
[2]. In the case of coupled diffusion some promising symmetry results were obtained
by Wiltshire [21], though the analysis was primarily linear in nature.

It is the aim here to produce an extended symmetry analysis for the cases of linear and
nonlinear coupled diffusion and to show how the power-law and exponential diffusivities
for the scalar cases can be generalized. Furthermore, particular analytical solutions for
coupled diffusion will be given that correspond to impulsive boundary conditions. Finally,
the analysis will be discussed in connection with the problem of determining solutions
for the nonlinear coupled diffusion of temperature and volumetric moisture content under
periodic boundary conditions. Two similarity variables and a perturbation method will be
used to generate a solution valid when the matrix of diffusion coefficients is exponentially
dependent on the similarity variables.

Our attention will be focused on the one-dimensional nonlinear equation written in the
form

p(x, t,y, ẏ,y′,y′′) = ∂y

∂t
− ∂

∂x

{
3(y)

∂y

∂x

}
= 0 (2)

wherey = y(x, t) with y = {yi}, i = 1, . . . , n and where3(y) is the square matrix
of diffusion coefficients, with det3 6= 0. In many physical situations this matrix is non-
singular and sometimes diagonally dominant. The group classification of the scalar case
y = {y1}, constant3, or heat equation is well known [11] and it will be shown that some
of the results presented here are similar to the scalar case.

Finally although the focus here will be on applications of coupled diffusion in
soil science, such systems are also important in mathematical biology where examples
concerning chemotaxis, in which organisms respond positively to a chemical attractant, are
also extremely important [9, 17].
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The analysis begins in section 2 with the derivation of the determining equations for the
classical symmetry groups associated with the system (2) and then continues in section 3
with the presentation of a detailed analysis of the particular groups corresponding to various
function forms for3(y). In section 4 a similar analysis is presented for the case when3

is constant and further a summary of the principal Lie symmetries is given in tabular form.
In section 5 this analysis is then used to obtain a symmetry reduction of coupled diffusion
corresponding to impulsive boundary conditions, and in section 6 a symmetry reduction
linked with perturbation analysis is presented so as to discuss the coupled flow of moisture
and heat in a soil.

2. Definition of the classical symmetry groups

A complete account of the method explained in this section may be found in, for example,
Olver [10], Bluman and Kumei [1] and Stephani [20].

The infinitesimal generatorX is defined by

X = ξ(x, t,y) ∂
∂x
+ η(x, t,y) ∂

∂t
+ π(x, t,y) · ∇ ∇ =

{
∂

∂yi

}
(3)

and further the appropriate prolongation operator may be written as

XE = ξ ∂
∂x
+ η ∂

∂t
+ π·∇ + πx·∇y ′ + πt ·∇ẏ + πxx·∇y ′′ (4)

whereπx , πt andπxx have familiar forms which are presented in the appendix and where

∇y ′ =
{
∂

∂y ′i

}
∇ẏ =

{
∂

∂ẏi

}
∇y ′′ =

{
∂

∂y ′′i

}
. (5)

The condition for invariance of equation (2) may be found by settingXEp
∣∣
(2) = 0, with the

result that

πt = 3πxx +
[
(π·∇)3]y′′ + [(y′·∇)3]πx + [(πx·∇)3]y′ + [(π·∇)(y′·∇)3]y′ (6)

which is also presented in an expanded form in the appendix. It may be shown that many
of the resulting equations are identically satisfied only if

ξ = ξ(x, t) η = η(t). (7)

The remaining non-trivial determining equations are

π̇ = 3π′′ (8)

−ξ̇y′ = 23(y′·∇)π′ − ξ ′′3y′ + [(y′·∇)3]π′ + [(π′·∇)3]y′ (9)

(3y′′ ·∇)π − η̇3y′′ = 3[(y′′·∇)π]− 2ξ ′3y′′ + [(π·∇)3]y′′ (10)

(3y′·∇)(y′·∇)π = 0. (11)

By inspection of the determining equations (8)–(11) theprincipal Lie algebra is the
three-dimensional space of infinitesimal symmetries of equation (2) spanned by the operators

X1 = ∂

∂x
X2 = ∂

∂t
X3 = x ∂

∂x
+ 2t

∂

∂t
. (12)



7486 V A Baikov et al

3. Solution of the determining equations:Λ 6= constant

3.1.Λ is an arbitrary matrix and depends ony1, y2, . . . , yk

If 3 depends only onk variables, so that3 = 3(y1, y2, . . . , yk), 0< k < n, then the Lie
algebra can be extended to include

X3+i = ∂

∂yk+i
i = 1, 2, . . . , (n− k). (13)

3.2. Basic simplification

For particular cases of3, the system (8)–(11) can be satisfied without each of the coefficients
being zero. In these cases, extensions to the algebra (12) are possible. In this paper the
case

π = m(x, t)µ(y) (14)

will be considered wherem(x, t) is a scalar function andµ is a vector function ofy.
For the classification of cases when the algebra (12) may be extended, first note that

the determining equations may also be written as

aµ = b3µ (15)

−cy′ = 2d3(y′·∇)µ− e3y′ + d[(y′·∇)3]µ+ d[(µ·∇)3]y′ (16)

(3y′·∇)µ+ σ3y′ = 3[(y′·∇)µ]+ (µ·∇)3y′ (17)

(3y′·∇)(y′·∇)µ = 0 (18)

wherea, b, c, d, e andσ are constant coefficients (det3 6= 0). Indeed, since3 depends
only on y then (8) to (11) can hold only when all of the coefficients vanish identically or
are proportional, with constant coefficients, to the functionsm(x, t) 6= 0, λ1(x, t) 6= 0 and
λ2(x, t) 6= 0. Namely

ṁ(x, t) = aλ1(x, t) m′′(x, t) = bλ1(x, t) (19)

ξ̇ = cλ2(x, t) m′(x, t) = dλ2(x, t) ξ ′′ = eλ2(x, t) (20)

(2ξ ′ − η̇) = σm(x, t). (21)

It is easy to see from (20) and (21) that

2e = σd. (22)

Note that the system (15)–(18) is not compatible wheneverµ is an arbitrary vector
function. Thusµ may be found by writing

µ(y) = µ0(y)+
l∑
i=1

c̃iµi (y) l ∈ ℵ (23)

wherec̃1, c̃2, . . . , c̃l are arbitrary constants and3 does not depend oñci . Here,µ0 andµi
(i = 1, . . . , l) are linear independent solutions of the system (15)–(18) for a given matrix3.
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On substitution of (23) forµ(y) in the system (15)–(18) and by identifying coefficients
of c̃i , then the following system may be obtained:

aµ0 = b3µ0 (24)

−cy′ = 2d3(y′·∇)µ0− 1
2σd3y

′ + d[(y′·∇)3]µ0+ d
[
(µ0·∇)3

]
y′ (25)

(3y′·∇)µ0+ σ3y′ = 3
[
(y′·∇)µ0

]+ (µ0·∇)3y′ (26)

(3y′·∇)(y′·∇)µ0 = 0 (27)

aµi = b3µi (28)

d
[
23(y′·∇)µi +

[
(y′·∇)3]µi + [(µi·∇)3]y′] = 0 (29)

(3y′·∇)µi = 3
[
(y′·∇)µi

]+ (µi·∇)3y′ (30)

(3y′·∇)(y′·∇)µi = 0. (31)

Since det3 6= 0, it follows from (24) and (28) that the coefficientsa andb can only be
zero in simultaneous cases. Hence, further analysis of (24)–(31) will be continued in two
separate classes.

3.3. The classa 6= 0, b 6= 0

In this class equations (24) and (28) can be considered as an eigenvalue problem, where
λ3 = a/b is the eigenvalue andµ is the eigenvector of3. If 3 is such that there are
several eigenvectors corresponding to the same eigenvalueλ3, then in (23)l 6 n − 1. In
this case it may be shown that

σ = 0 e = 0 cm′′′ = 0. (32)

3.3.1. Subclassc 6= 0. The matrix3 and vectorsµ0 andµi (i = 1, . . . , l) are defined
from the system (24)–(31) with

σ = 0 c = d. (33)

When the system (24)–(31) is compatible, then

X4 = t2 ∂
∂t
+ tx ∂

∂x
+
(
x2

2
+ λ3t

)
µ0·∇ X5 = t ∂

∂x
+ xµ0·∇

X6+i = µi·∇ X6+l+i = xµi·∇
X6+2l+i =

(
1
2x

2+ λ3t
)
xµi·∇ i = 1, . . . , l.

(34)

Remark. The system (24)–(31) is incompatible whenµ0 = Ny + k, whereN is a n × n
constant matrix andk is a constant vector.

3.3.2. Subclassc = 0. The matrix3 and vectorsµ0, µi (i = 1, . . . , l) are defined by
(24)–(31) withσ = 0, c = 0. When the system (24)–(31) is compatible, then

X4+i = m(x, t)µi·∇ i = 0, . . . , l (35)
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wherem satisfiesṁ = λ3m′′. So, whenµ0 andµi (i = 1, . . . , l) are constant vectors, then
µi ≡ h (i = 0, . . . , l) whereh is a constant vector and3 may be found as a solution of
the system (24)–(31). Hence

3 = 91(y) = 91

(
y1

h1
− y2

h2
,
y1

h1
− y3

h3
, . . . ,

y1

h1
− yn
hn

)
λ3hi =

∑
j

hj9ij (36)

wherei, j = 1, . . . , n. The additional symmetry operator is

X∞ = m(x, t)h·∇. (37)

3.4. The classa = 0, b = 0

3.4.1. Subclass 1.d 6= 0. The matrix3 and vectorsµ0 andµi (i = 1, . . . , l) are defined
from (25)–(27), (29)–(31). In the cases when the system is compatible, the additional
symmetry operators are

X4 = −σ t ∂
∂t
+ µ0·∇ X5 =

(σ
4
x2+ c

d
t
) ∂

∂x
+ xµ0·∇

X5+i = µi·∇ X5+l+i = xµi·∇ i = 1, . . . , l.
(38)

To find the explicit form for3(y) the particular case, whenµ0 = Ny+ k will now be
considered, whereN is ann× n constant matrix andk is a constant vector.

Case (a). The systemNy+k = 0 has the solutiony = c. Since detN 6= 0 then eigenvalues
λ 6= 0 and regular transformations exist, such that

y = Bv + c ∇v = BT∇ N = λI +M B−1MB = 0 3 = B3B−1.

(39)

Subcase (i). It may be shown that in this case

c = 0 σ = − 4
3λ (40)

and the matrix3 has the form

3 = v−4/3
1 92(v)

92(v) =


− 1

391− I291,I2 − . . .− In91,In 91,I2 · · · 91,In

− 1
392− I292,I2 − · · · − In92,In 92,I2 . . . 92,In

...
...

. . .
...

− 1
39n − I29n,I2 − · · · − In9n,In 9n,I2 · · · 9n,In


(41)

where

9l = 9l(I2, . . . , In) 9l,Ij =
∂9l

∂Ij
Ij = vj

v1
j = 2, . . . , n l = 1, . . . , n. (42)

The generatorsX4 andX5 from (38) are

X4 = 4

3
t
∂

∂t
+ v·∇v X5 = −1

3
x2 ∂

∂x
+ xv·∇v. (43)
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Subcase (ii). In this case

c = 0 σ = −2λ 3v = 0 (44)

and the matrix has the form

3 = v−2
1 93(v) 93(v) = 93

(
v2

v1
, . . . ,

vn

v1

)
. (45)

The generatorsX4 andX5 from (38) are

X4 = 2t
∂

∂t
+ v·∇v X5 = −1

2
x2 ∂

∂x
+ xv·∇v. (46)

Case (b). The systemNy + k = 0 is incompatible. Consider

y = Az A−1NA = 0 ∇z = AT∇ 3 = A−13A h = A−1k.

In this case

3(z) = 9
(
z1

h1
− z2

h2
,
z1

h1
− z3

h3
, . . . ,

z1

h1
− zn

hn

)
(47)

whereh = {hi}, h1 6= 0 satisfying3h = l, wherel is a constant vector. The generators
X4 andX5 from (38) are

X4 = h·∇z X5 = xh·∇z. (48)

3.4.2. Subclass 2.d = 0. It is clear from equation (32) thatc = 0. The matrix3 and
vectorsµ0 andµi (i = 1, . . . , l) are defined by equations (25)–(27), (29)–(31) withd = 0
andc = 0. In the cases when this system is compatible, the additional symmetry operators
have the following forms:

X4 = −σ t ∂
∂t
+ µ0·∇ X4+i = µi·∇ i = 1, . . . , l. (49)

Consider some particular cases of the compatibility of this system.

Case (a).µ0 = Ny + k. In this case, (27) is an identity and the solution of (26) may be
considered in two separate subcases similar to the cased 6= 0 .

Subcase (i). The systemNy+k = 0 has the solutiony = c. Using (39) then (24)–(31),
(49) become

3(v) = vσ/λ1 93(v) 93(v) = 93

(
v2

v1
,
v3

v1
, . . . ,

vn

v1

)
X4 = −σ t ∂

∂t
+ λv·∇v

(50)

where9(y) is ann× n matrix.



7490 V A Baikov et al

Subcase (ii): The systemNy + k = 0 is incompatible. In this case

3(z) = exp

(
σ

h1
z1

)
94(z)

9(z) = 94

(
z1

h1
− z2

h2
,
z1

h1
− z3

h3
, . . . ,

z1

h1
− zn

hn

) (51)

and the particular form ofX4 from (49) is

X4 = −σ t ∂
∂t
+ h·∇z. (52)

Case (b).Λ is an upper-triangular matrix andn = 2. It may be shown that the system
(24)–(31) is compatible, whenµ0 is nonlinear. In particular

µ0 =
(
y1α(y2)+ β(y2)

γ1y2+ γ2

)
3 = (γ1y2+ γ2)

σψ(J )

(
1 τ

0 −1

)
(53)

where

τ = 1

α′
(y1α

′′ + β ′′) (γ1y2+ γ2)
α′′

α′
+ 2α + γ3 = 0 (54)

β ′′′ + β ′′
(
−α
′′

α′
+ γ1+ α

)
+ 2β ′α′ + βα′′ = 0. (55)

The functionψ is arbitrary andJ is an invariant of the equation

µ1
0
∂

∂y1
J + µ2

0
∂

∂y2
J = 0 (56)

andγ1, γ2, γ3 are arbitrary constants.

4. Solution of the determining equations whenΛ = Λ[0] is constant

In the particular case when3 = 3[0] is constant the determining equations (8) to (11)
may be solved explicitly as follows. It follows from (11) that3[0](y′·∇)2π = 0 and since
det3[0] 6= 0, then

π = M(x, t)y + β(x, t) (57)

whereM is a n× n matrix andβ is a vector, such that equations (8)–(11) become

Ṁ = 3[0]M ′′ β̇ = 3β′′ (58)

−ξ̇ I = 3[0]M ′ +M ′3[0] +3[0]ξ ′′ (59)

(2ξ ′ − η̇)3[0] +M3[0] −3[0]M = 0. (60)

On differentiation of (59) with respect tox and with the aid of (60) differentiated twice
with respect tox, it may be shown that

−3[0] ξ̇ ′ = 3
23

[0]Ṁ + 1
2Ṁ3

[0] . (61)

In addition, since det3[0] 6= 0, from equation (60) we havëηI = −4Ṁ ⇒ Ṁ = ḣ(t)I .
Hence

M(x, t) = h(t)I +G(x) η̇ = −4h(t)+ a0 (62)
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wherea0 is a constant. It follows on substitution of (62) in (61) that

ξ ′ = −2h(t)+ g(x). (63)

If the relationships (62) to (63) are now successively substituted in (58), (60) and then (58)
the exact form ofξ(x, t) , η(t) andM(x, t) found. In this way it may be shown that in
addition to (12) the infinitesimal generators have the form

X4 = 2t
∂

∂x
− x3[0]y·∇ (64)

X5 = 4tx
∂

∂x
+ 4t2

∂

∂t
− (x23[0] + 2tI )y·∇ (65)

X6 = Ay·∇ X7 = −c6x
∂

∂x
X∞ = β·∇ (66)

wherec6 andA are related through

A3[0] −3[0]A = 2c63
[0] . (67)

If det3[0] 6= 0 then equation (67) has a solution if and only ifc6 = 0. A summary of the
results is presented in table 1.

Table 1. Principal examples of classical symmetry.β̇ = 3[0]β′′, ṁ = (a/b)m′′ and9i(y) are
defined in section 3.

3(y) ξ η π

3(y)
y = {y1 . . . yn}

c1x + c2 2c1t + c3 0

3(y)
y = {y1 . . . ym}
m < n

c1x + c2 2c1t + c3 h = {h1, . . . , hm}

3[0] (c1 − c6)x + c4tx

+ c5t + c2

c4t
2 + 2c1t + c3 − { 1

4c4t + 1
23
−1
0 c4x

2 1
23
−1
0 c5x

+A}y + β
91(y) c1x + c2 2c1t + c3 mh

(y1 + k1)
−4/392(y) − 1

3c5x
2 + c1x + c2 (2c1 + 4

3c4)t + c3 (c5x + c4)(y + k)
(y1 + k1)

−293(y) − 1
2c5x

2 + c1x + c2 (2c1 + 2c4)t + c3 (c5x + c4)(y + k)
(y1 + k1)

σ/λ93(y) c1x + c2 (2c1 − σc4)t + c3 c4λ(y + k)
eσ(y1+k1)/λ94(y) c1x + c2 (2c1 − σc4)t + c3 c4h

5. Self-similar solution for impulsive boundary conditions

In this section consideration is given to symmetry reduction for the case of impulsive
boundary conditions. In particular, suppose thaty = [y1, y2]T and

∂y

∂t
= ∂

∂x

{
yk1Ψ

(
y2

y1

)
∂y

∂x

}
y1, y2 > 0 t > t0 (68)

y(x, t0) = aδ(x − x0)y0 (69)

whereδ(x − x0) is the Dirac measure atx0.
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According to the invariance principle, it is necessary to find the subalgebra of the Lie
algebra spanned by

X1 = ∂

∂t
X2 = ∂

∂x
X3 = 2t

∂

∂t
+ x ∂

∂x
(70)

X 4 = −kt ∂
∂t
+ y1

∂

∂y1
+ y2

∂

∂y2
(71)

which leaves theinitial manifold, the line t = t0, invariant and which also conserves the
initial conditions at t = t0 given byx = x0 and by equation (69). This subalgebra is the
two-dimensional algebra spanned by

Y1 = 2(t − t0) ∂
∂t
+ (x − x0)

∂

∂x
(72)

Y2 = −k(t − t0) ∂
∂t
+ y1

∂

∂y1
+ y2

∂

∂y2
. (73)

Hence, in summary it is necessary to consider the generator

Y = 1

k + 2
(Y1− Y2) = (t − t0) ∂

∂t
+ 1

k + 2
(x − x0)

∂

∂x
− 1

k + 2

(
y1

∂

∂y1
+ y2

∂

∂y2

)
. (74)

Using the method of characteristics the similary ansatz is found to be

y(x, t) = (t − t0)−1/(k+2)ϕ(ω) ω = x − x0

(t − t0)1/(k+2)
k + 2 6= 0 (75)

and so the diffusion equation reduces to

− 1

k + 2
ωϕ = ϕk1

[
Ψ

dϕ

dω

]
+ ϕ0 (76)

whereϕ0 may be taken as zero whenϕ remains bounded for allω.

5.1. General solution

In this case equation (76) may be rewritten in the following form:

dϕ1

dω
= 1

D(k + 2)
ω

[
921

ϕ1

ϕk1
−911

ϕ2

ϕk1

]
(77)

dϕ2

dω
= 1

D(k + 2)
ω

[
922

ϕ1

ϕk1
−912

ϕ2

ϕk1

]
(78)

where

D = 911922−912921. (79)

Using the ratio of these equations it is easy to establish the implicit solutions forϕ1 andϕ2

in the terms as follows:

ϕ1 = w(ω)ϕ2 ϕ2 = C exp

(∫
dw

8(w)

)
(80)

1

2(k + 2)
(ω2

0 − ω2) =
∫

dw

M(w)
= F(w) (81)

so that

w = F−1

(
1

2(k + 2)
(ω2

0 − ω2)

)
(82)
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where

8(w) = 922w −912

921w −911
− w

M(w) = 8(w)

D

[
921w −911

]
C−k exp

(
−k

∫
dw

8(w)

)
w−k.

(83)

In addition,C andω0 are constants which are determined from theinitial conditions.

5.2. A particular example

In the case when

Ψ = γ
(
ϕ2

ϕ1

)
Ψ0 (84)

whereγ
(
ϕ2/ϕ1

)
is an arbitrary function, the equation (76) may be solved by supposing that

the matrixΨ0 has two distinct eigenvalues with

Ψ0m = λ1m Ψ0n = λ2n (85)

and by supposing that

ϕ(ω) = α(ω)m+ β(ω)n. (86)

In this way it may be shown that

− 1

k + 2
ωα = λ1 (α(ω)m1+ β(ω)n1)

k γ

(
α(ω)m2+ β(ω)n2

α(ω)m1+ β(ω)n1

)
dα

dω
(87)

− 1

k + 2
ωβ = λ2 (α(ω)m1+ β(ω)n1)

k γ

(
α(ω)m2+ β(ω)n2

α(ω)m1+ β(ω)n1

)
dβ

dω
. (88)

With the help of the ratio of these equations it is easy to establish the implicit solutions for
α andβ in the terms as follows:

α(β) = α0β
λ2/λ1 (89)

1

2(k + 2)
(ω2

0 − ω2) = λ2

∫
(α(ω)m1+ β(ω)n1)

k γ

(
α(ω)m2+ β(ω)n2

α(ω)m1+ β(ω)n1

)
dβ

β
= N(β)

(90)

β(ω) = N−1

(
1

2(k + 2)
(ω2

0 − ω2)

)
. (91)

Therefore equations (75), (86), (89) and (91) give self-similar solution of (68), (69).
In particular, whenmi, ni > 0 and sinceβ > 0 we have

β = 0 |ω| > ω0 (92)

andβ is determined from equation (91) for|ω| 6 ω0.
Moreover, without loss generality it may be supposed thatλ1 > λ2 and it is clear that

whenω ∼ ω0

β =
[

k

2(k + 2)λ2n
k
1γ
(
n2/n1

) (ω2
0 − ω2)

]1/k

+O
(
(ω2

0 − ω2)1/k+p
)

k > 0 p > 0. (93)
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In the case whenk = 0 andγ ≡ 1 then (89) and (90) can be integrated and combined
with (86) to give

ϕ(ω) = α0 exp

(
− ω

2

4λ1

)
m+ β0 exp

(
− ω

2

4λ2

)
n. (94)

The constant and can be found from the conservation relationship∫ ∞
−∞
y(x, t0) dx =

∫ ∞
−∞

ϕ(ω) dω = ay0. (95)

It should be noted that for practical situations the solutions presented in this section
may be applied in ideal situations when the solute and moisture distributions have finite
integrals, as is the case when spillages occur. In the description of the coupled diffusion of
heat and moisture, subject to diurnal or annual variation, such solutions are not valid, and
an analysis of the type to be presented in section 6 becomes more appropriate.

6. Application to coupled flow in porous media

6.1. ConstantΛ[0]

Of particular physical interest is the case of the coupled diffusion of temperature,y1(x, t),
and volumetric water content,y2(x, t), in which the diffusion processes are subject to
periodic diurnal or annual boundary conditions. Indeed, in experiments conductedin situ
by Jackson [6] for Adelanto loam at a site in Arizona, and by Rose [14] for a sandy loam in
the Northern Territory, Australia, the elements of the matrix of diffusion coefficients3(y)
varied about the constant matrix values of3[0] such that

3
[0]
J =

[
2.23× 10−3 4.18× 10−3

5.31× 10−8 5.07× 10−5

]
3

[0]
R =

[
2.16× 10−3 8.56× 10−5

6.21× 10−8 5.11× 10−5

]
(96)

calculated for the respective Jackson and Rose experiments using their CGS units.
Consider the case when3(y) = 3[0] is a constant. It may be seen from equations (64),

(66) that equation (2) admits the following subalgebra spanned by:

Y1 = A1y·∇ − α1
∂

∂x
+ ω ∂

∂t
Y2 = A2y·∇ − α2

∂

∂x
+ ω ∂

∂t
(97)

Ai = 3[0]BCi
(
3[0]

)−1
B = (n1,n2) i = 1, 2 (98)

C1 =
(

1 0

0 0

)
C2 =

(
0 0

0 1

)
(99)

wheren1,n2 are the eigenvectors of3[0] with distinct eigenvaluesλ1 andλ2.
The transformation

y = Bv (100)

gives rise to

Z1 = v1
∂

∂v1
− α1

∂

∂x
− ω ∂

∂t
Z2 = v2

∂

∂v2
− α2

∂

∂x
− ω ∂

∂t
(101)

and

∂v

∂t
=
(
λ1 0

0 λ2

)
∂2v

∂x2
. (102)
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The invariant solutions under the symmetries (101) have the form

v1 = e−α1xϕ1(ω1− a1x) = e−α1xϕ1(ξ1) (103)

v2 = e−α2xϕ2(ω2− a2x) = e−α2xϕ2(ξ2) (104)

and so substitution of (103), (104) in (102) means that
ω

λ1
ϕ′1 = α2

1[ϕ1+ 2ϕ′1+ ϕ′′1]
ω

λ2
ϕ′2 = α2

2[ϕ2+ 2ϕ′2+ ϕ′′2] (105)

with solutions

ϕ1 = Re(C1eγ1ξ1 + C2eγ2ξ2) ϕ2 = Re(C3eτ1ξ2 + C4eτ2ξ2) (106)

γ1,2 = −1+ ω

2λ1α
2
1

±
√(

1− ω

2λ1α
2
1

)2

− 1

τ1,2 = −1+ ω

2λ2α
2
2

±
√(

1− ω

2λ2α
2
2

)2

− 1.

(107)

If αi =
√
ω/2λi, i = 1, 2 thenγ1,2 = ±i, τ1,2 = ±i and so

ϕ1 = a1 cos(ξ1)+ b1 sin(ξ1) ϕ2 = a2 cos(ξ2)+ b2 sin(ξ2). (108)

With bi = 0 the solution is

y(x, t) = aje−αj x cos(ωt − αjx)nj . (109)

This solution for coupled diffusion was obtained by Shepherd and Wiltshire [16], where
y(x, t) is the variation about the mean value and where the repeated index implies
summation from 1 to 2.

In addition, if3[0] = 3J [0] then

n1 =
(

0.99̇

2.44× 10−5

)
λ1 = 2.23× 10−3

n2 =
(−0.89

0.46

)
λ2 = 5.06× 10−5.

(110)

6.2. Quasi-constantΛ(y)

The question arises as to how this solution may be modified for instances when3 is
no longer constant and yet harmonic boundary conditions are still required. From the
point of view of similarity reduction, consideration is given to analytic forms of3(y),
including constant3[0] , for which travelling wave solutions exist, which also satisfy
specified harmonic boundary conditions. However, the simple use of the similarity variable
ξ = µ1t + µ2x will not automatically give rise to solutions proportional to cos(ωt)

on the boundary. Indeed, even in cases whereµ1 is complex, solutions with harmonic
boundary conditions cannot be obtained unless two similarity variablesξ1 = iωt +µ2x and
ξ = −iωt + µ2x are employed. The approach adopted here will be to write our travelling
wave solution in the formy(x, t) = f (x)Φ(ξ), ξ = ωt − αx. In fact, it is easy to see on
multiplication of (2) by eωt that the following ordinary differential equation:

ωeξ
dΦ
dξ
= α d

dξ

[
3α

d

dξ
(eξΦ)

]
(111)
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is obtained where now

y(x, t) = e−αxΦ(ξ). (112)

As suggested by the above symmetry classification analysis it will be supposed that
3(y) has a form given by equation (68). In addition it will also be assumed thatk = 0 so
that the case of constant3 is included as a limiting case of this analysis. In addition, using
equation (84) it follows that

3(y) = 3
(
y2

y1

)
≡ 3(f (ξ)). (113)

However, equation (111) must be modified to include the fact that the proposed solutions
y, modifications of (109), have two componentsni , i = 1, 2, and are also functions of the
two similarity variablesξ1 andξ2. In particular, equations (112), (113) will be generalized
so that

ξi = ωt − αix
y(x, t) = e−αixΦi (ξ1, ξ2)

3

(
y2

y1

)
= 3(f (ξ1), g(ξ2)

)
.

(114)

In this way equation (2) may be written as

ωje
ξi
∂Φi

∂ξj
= αk ∂

∂ξk

[
3αi

∂

∂ξi
(eξjΦj )

]
(115)

where again repeated indices imply summation from 1 to 2, and further

ωj = ω j = 1, 2. (116)

Of course, equation (115) could be analysed in detail using the method presented in
section 5. However, the approach here will be to adopt a perturbation method to account
for small variations in3(y) as described by Jackson [6] and Rose [14]. Thus it will be
assumed that

3
(
f (ξ1), g(ξ2)

) = 3[0] + ε3[1](ξ1, ξ2)+O(ε2)

Φi (ξ1, ξ2) = Φ[0]
i (ξ1, ξ2)+ εΦ[1]

i (ξ1, ξ2)+O(ε2)

Φ[0]
i (ξ1, ξ2) = ai cosξini .

(117)

In this way, it may be shown that the equation arising from coefficients ofε0 gives rise
exactly to the solution (109), whilst the equation for componentΦ[1]

j arising fromε1 is

3[0]αiαk
∂2

∂ξi∂ξk
(eξjΦ[1]

j ) = ωkeξj
∂Φ[1]

j

∂ξk
− αk ∂

∂ξk

[
3[1]αi

∂

∂ξi
(eξjΦ[0]

j )

]
. (118)

This equation may be simplified in cases of (113) where

Φ[1]
i = φ[1]

i ni 3[1] = 3[0]σ(ξ1, ξ2) (119)

to give the linear differential equation for componentφ
[1]
j , j = 1, 2:

njλjαiαk
∂2

∂ξi∂ξk
(eξj φ[1]

j ) = ωkeξi
∂φ

[1]
j

∂ξk
nj − αk ∂

∂ξk

[
σ(ξ1, ξ2)λje

ξj (cosξj − sinξj )
]
nj .

(120)
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This equation may be solved for specificσ(ξ1, ξ2). In particular, when

σ(ξ1, ξ2) = σ0 exp[ρ1ξ1+ ρ2ξ2] (121)

then

φ
[1]
j (ξ1, ξ2) = Xj(ξj ) exp[ρ1ξ1+ ρ2ξ2] (122)

where

Xj(ξj ) = e−ηj ξj
{
Aj exp

[√
βjξ1

]+ Bj exp
[−√βjξ1

]}
+ ajσ0

s2
j + 4η2

j

{[
sj (ηj + 2)− 2η2

j

]
sinξ1− ηj

[
sj + 2ηj + 4

]
cosξ1

}
(123)

and

ηj = α1ρ1+ α2ρ2

αj
> 0 β1 = 2ρ2

(
α1− α2

α1

)
− 1

sj = η2
j + βj − 1 β2 = 2ρ1

(
α2− α1

α2

)
− 1.

(124)

In summary, a final solution to first order inε when

3
(
f (ξ1), g(ξ2)

) = 3[0]
(
1+ εσ0 exp[ρ1ξ1+ ρ2ξ2]

)
(125)

is

y(x, t) = e−αj x
(
aj cosξj + εXj (ξj ) exp[ρ1ξ1+ ρ2ξ2]

)
nj (126)

whereXj(ξj )is given by (123). If now the constantsAj , Bj are chosen so thatφ[1]
j (0, 0) = 0

in (123), then equation (126) will satisfy the harmonic boundary conditions.
In this solution the matrix of diffusion coefficients is a nonlinear function of the rations

of the components ofy in such a way that the surfaxesξi = constant give rise to a constant
value of3. Clearly, the perturbation approach may be extended to higher orders inε and
also a more detailed analysis of potential analytic forms for3 is required to include a
broader range of possibilities than the exponential example of (121).

Finally, numerical calculations of (125) and (121) are straightforward. The eigenvalues
and eigenvectors of3[0] may be calculated from (96) so thatαi will be known for
annual or diurnal variation. In addition, the amplitudes of temperature and moisture
variation may be taken from the experiments of Jackson [6] or Rose [14], so for example
[ a1 a2 ]T ≈ [ 10 0.1]T, and furtherσ0 ≈ 10−2 appears to be valid. It follows that the
spatial distributions and time evolutions ofy(x, t) may be plotted for particular cases ofρ1

andρ2.
Practical situations pose further interesting mathematical problems. The combination

on the boundary of diurnal variations in temperature and impulsive inputs for moisture is of
particular note. More generally, only Dirichlet boundary conditions have been considered
here, although in practical cases both Neumann and Robin situations are also particularly
important.

Appendix. Generation of the determining equations

The specification of the prolongation operator (4) can be completed using

πx =
[
π′ + (y′·∇)π]− [ξ ′ + (y′·∇)ξ]y′ − [η′ + (y′·∇)η]ẏ (A1)
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πt =
[
π̇ + (ẏ·∇)π]− [ξ̇ + (ẏ·∇)ξ]y′ − [η̇ + (ẏ·∇)η]ẏ (A2)

πxx =
[
π′′ + (y′·∇)π′ + (y′′·∇)π]− [ξ ′′ + (y′·∇)ξ ′ + (y′′·∇)ξ]y′

− [η′′ + (y′·∇)η′ + (y′′·∇)η]ẏ + (y′·∇)π′ + (y′·∇)2π
−[(y′·∇)ξ ′ + (y′·∇)2ξ]y′ − [(y′·∇)η′ + (y′·∇)2η]ẏ
−2
[
ξ ′ + (y′·∇)ξ]y′′ − 2

[
η′ + (y′·∇)η]ẏ′. (A3)

Therefore the condition for invarianceXE p|(2) = 0 becomes

πt −3πxx −
[
(π·∇)3]y′′ − [(y′·∇)3]πx − [(πx·∇)3]y′ − [(π·∇)(y′·∇)3]y′∣∣(2) = 0.

(A4)

In addition,ẏ may be eliminated using (2) in the form

ẏ = 3y′′ + [(y′·∇)3]y′. (A5)

In order to find symmetry groups, the coefficients of (A4) must be equated to give the
following conditions:

Constant: π̇ = 3π′′

y′: − ξ̇y′ = 23(y′·∇)π′ − ξ ′′3y′ + [(y′·∇)3]π′ + [(π′·∇)3]y′
y′′: (3y′′·∇)π − η̇3y′′ = 3[(y′′·∇)π]−3η′′3y′′ − 2ξ ′3y′′ + [(π·∇)3]y′′
y′,y′:

([
(y′·∇)3]y′·∇)π − η̇[(y′·∇)3]y′

= −3(y′·∇)ξ ′y′ −3η′′[(y′·∇)3]y′ +3(y′·∇)2π
−3(y′·∇)ξ ′y′ + [(y′·∇)3][(y′·∇)π]− [(y′·∇)3]ξ ′y′
+ [({[(y′·∇)π]− ξ ′y′} ·∇)3]y′ + [(π·∇)(y′·∇)3]y′

y′,y′′: − [(3y′′·∇)ξ]y′ = −3(y′′·∇)ξy′ −3(y′·∇)η′3y′′ −3(y′·∇)η′3y′′
− 23

[
(y′·∇)ξ]y′′ − [(y′·∇)3]η′3y′′ − [(η′3y′′·∇)3]y′

y′′,y′′: − [(3y′′·∇)η]3y′′ = −3[(y′′·∇)η]3y′′
y′,y′,y′: − [([(y′·∇)3]y′·∇) ξ]y′ = −3[(y′·∇)η′] ([(y′·∇)3]y′)−3(y′·∇)2ξy′

−3(y′·∇)η′[(y′·∇)3]y′ − [(y′·∇)3](y′·∇)ξy′
− [({(y′·∇)ξy′ − [η′ + (y′·∇)η][(y′·∇)3]y′} ·∇)3]y′

y′,y′,y′′: − [(3y′′·∇)η][(y′·∇)3]y′ − [([(y′·∇)3]y′·∇) η]3y′′
= −3[(y′′·∇)η] ([(y′·∇)3]y′)−3[(y′·∇)2η]3y′′
− [(y′·∇)3][(y′·∇)η]3y′′ + [((y′·∇)η3y′′·∇)3]y′

y′,y′,y′,y′: − [([(y′·∇)3]y′·∇) η] [(y′·∇)3]y′
= −3[(y′·∇)2η][(y′·∇)3]y′
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−[(y′·∇)3][(y′·∇)η][(y′·∇)3]y′
ẏ′ : 0= −23η′ẏ′

y′, ẏ′: 0= −23(y′·∇)ηẏ′.
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